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When is IV used?

Instrumental variables methods are typically used to address the following kinds of

problems

1. Omitted variable bias

2. Measurement error

3. Simultaneity bias

4. Reverse causality

5. Randomized control trials with noncompliance
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Demand and supply curves are unidentified

� You can’t simple look at correlations between price and quantity to get elasticity

of demand

� The pairs of quantity and price are equilibrium values and therefore don’t reflect

the demand or the supply curve









Solution:

� Something that shifts only one of the curves and traces the other

� This is called an “instrument”





For now, assume constant treatment effects

� Constant treatment effects (i.e., β is constant across all individual units)

� Constant treatment effects is the traditional econometric pedagogy when first

learning instrumental variables

� Identical to assuming that ATE=ATT=ATU because constant treatment effects

assumes βi = β−i = β for all units



Our causal model: Returns to schooling again

Y = α + δS + γA + ν︸ ︷︷ ︸
ε

where Y is log earnings, S is years of schooling, A is unobserved ability, and ε is the

total error (ν is an idiosyncratic shock)

� Problem: S is correlated with the error term ε

� Suppose there is a variable, Zi correlated with Si and uncorrelated with A and ν
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How can IV be used to obtain consistent estimates?

Cov(Y ,Z ) = Cov(α + δS + γA + ν,Z )

= E [(α + δS + γA + ν)Z ]− E [α + δS + γA + ν]E [Z ]

= {αE (Z )− αE (Z )}+ δ{E (SZ )− E (S)E (Z )}
+γ{E (AZ )− E (A)E (Z )}+ E (νZ )− E (ν)E (Z )

Cov(Y ,Z ) = δCov(S ,Z ) + γCov(A,Z ) + Cov(ν,Z )

� Cov(S ,Z ) 6= 0: Instrument is relevant or “first stage” exists. S and Z are

correlated

Cov(Y ,Z )

Cov(S ,Z )
= δ + γ

Cov(A,Z )

Cov(S ,Z )
+

Cov(ν,Z )

Cov(S ,Z )
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Two-stage least squares

� The two-stage least squares estimator was developed by Theil (1953) and Basman

(1957) independently

� While IV is a research design, 2SLS is a specific estimator.

� Others include LIML, the Wald estimator, jacknive IV, two sample IV, and more
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Two-stage least squares concepts

� Causal model. Sometimes called the structural model:

Yi = α + δSi + ηi

� First-stage regression. Gets the name because of two-stage least squares:

Si = γ + ρZi + ζi

� Second-stage regression. Notice the fitted values, Ŝ :

Yi = β + δŜi + νi

� Reduced form a regression of Y onto the instrument:

Yi = ψ + πZi + εi

where Cov(Z , ηi ) = 0 (instrument is valid) and ρ 6= 0 (instrument is relevant).



Two-stage least squares: Estimator I

δIV =
Cov(Y ,Z )

Cov(S ,Z )

=

Cov(Z ,Y )
Var(Z)

Cov(Z ,S)
Var(Z)

Calculate the ratio of “reduced form” (π) to “first stage” coefficient (ρ):

δ̂2sls =

Cov(Z ,Y )
Var(Z)

Cov(Z ,S)
Var(Z)

=
π̂

ρ̂
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Two-stage least squares: Estimator II

Recall

Si = γ + ρZi + ζi

Then

Ŝ = γ̂ + ρ̂Z

δ̂2sls =
Cov(Ŝ ,Y )

Var(Ŝ)

=
Cov(γ̂ + ρ̂Z ,Y )

Var(γ̂ + ρ̂Z )

=
ρ̂Cov(Z ,Y )

ρ̂2Var(Z )

=
Cov(Z ,Y )

ρ̂Var(Z )
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Two-stage least squares: Estimator II
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Intuition of 2SLS

� Two stage least squares is nice because in addition to being an estimator, there’s

also great intuition contained in it which you can use as a device for thinking

about IV more generally.

� The intuition is that 2SLS estimator replaces S with the fitted values of S (i.e.,

Ŝ) from the first stage regression of S onto Z and all other covariates.

� By using the fitted values of the endogenous regressor from the first stage

regression, our regression now uses only the exogenous variation in the regressor

due to the instrumental variable itself



Intuition of IV in 2SLS

� . . . but think about it – that variation was there before, but was just a subset of

all the variation in the regressor

� Endogenous variable has pieces that are as good as random, and IV finds them

� Instrumental variables therefore reduces the variation in the data, but that

variation which is left is exogenous



Estimation with software

� One manual way is just to estimate the reduced form and first stage coefficients
and take the ratio of the respective coefficients on Z

� While it is always a good idea to run these two regressions, don’t compute your IV

estimate this way

� Often the case that a pattern of missing data will differ between Y and S

� What is the standard error of δIV in this case?

� Another is to find the fitted values values of S and run the regression with them

� While it is always a good idea to run this regression too (the first stage), don’t

compute your IV estimate this way

� The standard errors from the second stage regression are also wrong



Estimation with software

� Estimate this in Stata using ivregress 2sls.

� Estimate this in R using ivreg in the AER package or using felm in the lfe package
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Weak instruments

� A weak instrument is one that is not strongly correlated with the endogenous

variable in the first stage

� This can happen if the two variables are independent or the sample is small

� If you have a weak instrument, the cure ends up being worse than the disease
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Weak instruments

Back to our causal model

δiv =
Cov(Y ,Z )

Cov(S ,Z )
= δ + γ

Cov(A,Z )

Cov(S ,Z )
+

Cov(ν,Z )

Cov(S ,Z )

If Cov(S ,Z ) is small, then it “blows-up” the γ(Cov(A,Z ) + Cov(η,Z )) term
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Look at the reduced form

1. Look at the reduced form

� The reduced form is estimated with OLS and is therefore unbiased

� If you can’t see the causal relationship of interest in the reduced form, it is probably

not there
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Report the first stage

2. Report the first stage (preferably in the same table as your main results)

� Does it make sense?

� Do the coefficients have the right magnitude and sign?

� Please make beautiful IV tables – you’ll be celebrated across the land if you do

3. Report OLS – you said it was biased, but we want to still see it
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Question

How does sleep affect  
productivity and wages?



Sunset time instrument

We require exogenous variation in sleep


Claims: 


Earlier local sunset time causes longer sleep


Does not co-vary with unobserved determinants 
of wages























































Sunset time instrument: 
relevance

Earlier sunset leads to earlier bedtimes 
(Roenneberg et al 2007)


Work start times do not respond to later sunrise 
(Hamermesh et al 2008)


Therefore earlier sunset increases sleep duration


Maximum US sunset time difference ~1 hr; 
induces ~35 min weekly sleep difference



RAW SLEEP AND SUNSET TIME
SOURCE: ATUS
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Sunset time instrument: 
validity

Uncorrelated with daylight duration


US time zones first implemented 1883


Designed around scientific concerns



Sunset time instrument: 
validity

Optimal sorting would vary seasonally


No sorting incentives (more on this later)


No observed sorting (more on this later)



Table III: Linear ATUS Estimates

First stage Reduced form 2SLS OLS
Sleep ln(earnings) ln(earnings) ln(earnings)

Sunset time -24.1*** -0.0085***
(2.39) (0.0019)

Sleep 0.00035*** -0.000041***
(0.000085) (0.0000031)

Individual controls Yes Yes Yes Yes
Geographic controls Yes Yes Yes Yes
Time controls Yes Yes Yes Yes
Occupation Yes Yes Yes Yes
Observations 71947 71947 71947 71947
Adjusted R2 0.123 0.410 0.284 0.411
F-stat on IV 101.83

Notes: The table shows results from estimating Equation (1). The first three columns show
the first stage, reduced form, and two-stage least squares estimates. The fourth column
reports the OLS version of the second stage of Equation (1). The dependent variable is
indicated at the top of each column. Earnings refers to “usual weekly earnings”. Controls
are listed in Table II and are latitude, an indicator for female, age, age2, race indicators, day
of week of interview indicators, a holiday indicator, year indicators, and a set of occupation
indicators. Standard errors clustered at the FIPS (county or state) level are reported in
parentheses. Significance indicated by: *** p<0.01, ** p<0.05, * p<0.1.

for sleep as a function of sunset time. Sunset time is a significant predictor of sleep

duration, in the direction expected from the discussion in Section 3.2: a later local

sunset time causes an individual to sleep less. The raw covariance between sleep and

wage (Column 4) is slightly negative, as we would expect given strong reverse causality.

Using the sunset time instrument, however, the estimated coe�cient of .15 is large,

positive, and significant.10 This estimate corresponds to a one-hour change in sleep,

but our instrument induces 20 minutes of variation in sleep for the continental United

States.11 Therefore we interpret the result as follows: a twenty-minute increase in

10Note that our coe�cient estimate of 0.15 corresponds to a 16% change. Applying the maximum atten-
uation correction from Section 3.3 would move this estimate to 16.7%.

11The 20 minutes of induced variation comes from three sources. About one quarter of the variation comes
from geographic di↵erences in sunset time across timezones, one quarter comes from daylight savings time,
and the rest comes from seasonal variation. Alaska has the largest sunset variation, and including it gives
us almost 30 minutes of identified variation. Although Alaska is included in the baseline results, excluding
the 154 observations from that state does not change the estimate.

23
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Heterogenous Treatment Effects

� Up to this point, the causal effect was the same for all individuals

� Constant treatment effects where Y 1
i − Y 0

i = δ for all i units

� Let’s now try to understand what instrumental variables estimation is measuring if
treatment effects are heterogenous

� Y 1
i − Y 0

i = δi which varies across the population

39



Why do we care about heterogeneity?

� Heterogeneity, it turns out, makes life interesting and challenging

� What parameter did we even estimate using IV when there are heterogenous

treatment effects?

� There are two issues here:

1. Internal validity: Does the design successfully uncover causal effects for the

population that we are studying?

2. External validity: Does the study’s results inform us about different populations?



Potential outcome notation

“Potential treatment status” (D j) versus “observed” treatment status (D)

� D1
i = i ’s treatment status when Zi = 1

� D0
i = i ’s treatment status when Zi = 0

We’ll represent outcomes as a function of both treatment status and instrument

status. In other words, Yi (Di = 0,Zi = 1) is represented as Yi (0, 1)



Switching equation

Move from potential treatment status to observed treatment status

Di = D0
i + (D1

i − D0
i )Zi

= π0i + π1iZi + ζi

π0i = E [D0
i ]

π1i = (D1
i − D0

i )is the heterogenous causal effect of the IV on Di .

E [π1i ] = The average causal effect of Zi on Di



Identifying assumptions under heterogenous treatment effects

1. Stable Unit Treatment Value Assumption (SUTVA)

2. Random Assignment

3. Exclusion Restriction

4. Nonzero First Stage

5. Monotonicity



Stable Unit Treatment Value Assumption (SUTVA)

Stable Unit Treatment Value Assumption (SUTVA)
If Zi = Z ′i , then Di (Z) = Di (Z′)

If Zi = Z ′i and Di = D ′i , then Yi (D,Z) = Yi (D’,Z’)

� Potential outcomes for each person i are unrelated to the treatment status of

other individuals

� The instrument must not be related to treatment status of other individuals



Independence assumption

Independence assumption (e.g., “as good as random assignment”)
{Yi (D

1
i , 1),Yi (D

0
i , 0),D1

i ,D
0
i } ⊥⊥ Zi

� The IV is independent of the vector of potential outcomes and potential

treatment assignments (i.e. “as good as randomly assigned”)

� It’s all about the randomness of the instrument, in other words, not the

instrument’s effect



Independence

Independence means that the first stage measures the causal effect of Zi on Di :

E [Di |Zi = 1]− E [Di |Zi = 0] = E [D1
i |Zi = 1]− E [D0

i |Zi = 0]

= E [D1
i − D0

i ]



Independence

The independence assumption is sufficient for a causal interpretation of the reduced

form:

E [Yi |Zi = 1]− E [Yi |Zi = 0] = E [Yi (D
1
i , 1)|Zi = 1]

−E [Yi (D
0
i , 0)|Zi = 0]

= E [Yi (D
1
i , 1)]− E [Yi (D

0
i , 0)]



Exclusion Restriction

Exclusion Restriction
Y(D,Z) = Y(D,Z’) for all Z, Z’, and for all D

� Any effect of Z on Y must be via the effect of Z on D. In other words, Yi (Di ,Zi )

is a function of D only. Or formally:

Yi (Di , 0) = Yi (Di , 1) for D = 0, 1

� Sometimes called the “only through” assumption because you’re assuming the

effect of Z on Y is “only through” its effect on D.



Exclusion restriction

� Use the exclusion restriction to define potential outcomes indexed only by the

treatment status:

Y 1
i = Yi (1, 1) = Yi (1, 0)

Y 0
i = Yi (0, 1) = Yi (0, 0)

� Rewrite the switching equation:

Yi = Yi (0,Zi ) + [Yi (1,Zi )− Yi (0,Zi )]Di

Yi = Y 0
i + [Y 1

i − Y 0
i ]Di

� Random coefficients notation for this is:

Yi = α0 + δiDi

with α0 = E [Y 0
i ] and δi = Y 1

i − Y 0
i



Spotting violations of exclusion is a sport

Watch the gears turn:

� We are interested in causal effect of military service on earnings, and so use draft

number are instrument for military service.

� Draft number is generated by a random number generator. Therefore

independence is met as draft number is independent of potential outcomes and

potential treatment status.

� But, people with higher draft numbers evade draft by investing in schooling.

Earnings change for reasons other than military service. Exclusion is violated

� In other words, random lottery numbers (independence) do not imply that the

exclusion restriction is satisfied



Strong first stage

Nonzero Average Causal Effect of Z on D
E [D1

i − D0
i ] 6= 0

� D1 means instrument is turned on, and D0 means it is turned off. We need

treatment to change when instrument changes.

� Z has to have some statistically significant effect on the average probability of

treatment

� First two children of the same gender makes you more likely to have a third.

� Finally – a testable assumption. We have data on Z and D



Monotonicity

Monotonicity
Either π1i ≥ 0 for all i or π1i ≤ 0 for all i = 1, . . . ,N

� Recall that π1i is the reduced form causal effect of the instrumental variable on an

individual i ’s treatment status.

� Monotonicity requires that the instrumental variable (weakly) operate in the same

direction on all individual units.

� In other words, while the instrument may have no effect on some people, all those

who are affected are affected in the same direction (i.e., positively or negatively,

but not both).

� Without monotonicity, IV estimators are not guaranteed to estimate a weighted

average of the underlying causal effects of the affected group, Y 1
i − Y 0

i .



Force yourself to think of monotonicity violations

� In the quarter of birth example for schooling, this assumption may not be satisfied

� Being born in the 4th quarter (which typically increases schooling) may have

reduced schooling for some because their school enrollment was held back by their

parents



Local average treatment effect

If all 1-5 assumptions are satisfied, then IV estimates the local average treatment

effect (LATE) of D on Y :

δIV ,LATE =
Effect of Z on Y

Effect of Z on D



Estimand

Instrumental variables (IV) estimand:

δIV ,LATE =
E [Yi (D

1
i , 1)− Yi (D

0
i , 0)]

E [D1
i − D0

i ]

= E [(Y 1
i − Y 0

i )|D1
i − D0

i = 1]



Local Average Treatment Effect

� The LATE parameters is the average causal effect of D on Y for those whose

treatment status was changed by the instrument, Z

� For example, IV estimates the average effect of military service on earnings for the

subpopulation who enrolled in military service because of the draft but would not

have served otherwise.

� LATE does not tell us what the causal effect of military service was for patriots

(volunteers) or those who were exempted from military service for medical reasons



LATE cont.

� We have reviewed the properties of IV with heterogenous treatment effects using

a very simple dummy endogenous variable, dummy IV, and no additional controls

example.

� The intuition of LATE generalizes to most cases where we have continuous

endogenous variables and instruments, and additional control variables.



LATE and subpopulations

The instrument partitions any population into 4 distinct groups:

1. Compliers: The subpopulation with D1
i = 1 and D0

i = 0. Their treatment status

is affected by the instrument in the “correct direction”.

2. Always takers: The subpopulation with D1
i = D0

i = 1. They always take the

treatment independently of Z .

3. Never takers: The subpopulation with D1
i = D0

i = 0. They never take the

treatment independently of Z .

4. Defiers: The subpopulation with D1
i = 0 and D0

i = 1. Their treatment status is

affected by the instrument in the “wrong direction”.



Subpopulations of soldieres

Examples of subpopulations:

1. Compliers: I only enrolled in the military because I was drafted otherwise I

wouldn’t have served

2. Always takers: My family have always served, so I serve regardless of whether I

am drafted

3. Never takers: I’m a contentious objector so under no circumstances will I serve,

even if drafted

4. Defiers: When I was drafted, I dodged. But had I not been drafted, I would have

served. I can’t make up my mind.



Never-Takers
D1

i − D0
i = 0

Yi (0, 1)− Yi (0, 0) = 0

By Exclusion Restriction, causal effect of Z

on Y is zero.

Defier
D1

i − D0
i = −1

Yi (0, 1)− Yi (1, 0) = Yi (0)− Yi (1)

By Monotonicity, no one in this group

Complier
D1

i − D0
i = 1

Yi (1, 1)− Yi (0, 0) = Yi (1)− Yi (0)

Average Treatment Effect among Compliers

Always-taker
D1

i − D0
i = 0

Yi (1, 1)− Yi (1, 0) = 0

By Exclusion Restriction, causal effect of Z

on Y is zero.



Monotonicity Ensures that there are no defiers

� Why is it important to not have defiers?

� If there were defiers, effects on compliers could be (partly) canceled out by opposite

effects on defiers

� One could then observe a reduced form which is close to zero even though treatment

effects are positive for everyone (but the compliers are pushed in one direction by the

instrument and the defiers in the other direction)

� Monotonicity assumes there are no defiers



What Does IV (Not) Estimate?

� As said, with all 5 assumptions satisfied, IV estimates the average treatment effect

for compliers, or LATE

� Without further assumptions (e.g., constant causal effects), LATE is not

informative about effects on never-takers or always-takers because the instrument

does not affect their treatment status

� So what? Well, it matters because in most applications, we would be mostly

interested in estimating the average treatment effect on the whole population:

ATE = E [Y 1
i − Y 0

i ]

� But that’s not possible usually with IV



Summarizing

� The potential outcomes framework gives a more subtle interpretation of what IV
is measuring

� In the constant coefficients world, IV measures δ which is “the” causal effect of Di

on Yi , and assumed to be the same for all i units

� In the random coefficients world, IV measures instead an average of heterogeneous

causal effects across a particular population – E [δi ] for some group of i units

� IV, therefore, measures the local average treatment effect or LATE parameter, which

is the average of causal effects across the subpopulation of compliers, or those units

whose covariate of interest, Di , is influenced by the instrument.
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Compliance

� Most RCTs examine programs that will not be universally adopted when offered

� Compliance: Whether someone takes the treatment when they are offered

� In the case of a new type of farming practice there will be farmers offered the

practice who do not adopt it

� In the case of a job training program there will be entrepreneurs who choose not to

attend the training

� These are the non-compliers

� Let Ci be the compliance status of individual i

� If she chooses to accept the program then Ci = 1

� If not then Ci = 0

� Two impacts: intention-to-treat (ITT) and treatment-on-the-treated (ToT)
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Intention to Treat Effect

� The Intention to Treat Effect

ITT = E (Y1i |Ti = 1)− E (Y0i |Ti = 0)

� The ITT essentially ignores non-compliance: estimates the effect of ‘intending to

treat’ some units, regardless of how many take up the treatment

� Partially sidesteps compliance issues: Focus on treatment/ignore compliance

� It cannot completely escape compliance because a decreasing compliance rate will

push the ITT towards zero
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Treatment Effect on the Treated

� The Treatment Effect on the Treated

ToT = E (Y1i |Ti = 1;Ci = 1)− E (Y0i |Ti = 0;Ci = 1)

� This is the treatment effect on those who actually choose to accept the treatment

� The counterfactual is those who would have accepted the treatment if

they had been offered it

� Non-compliance drives down the ITT relative to the ToT

� If a program has no spillover effect (i.e., non-compliers in the treatment area

receive no indirect effect from the treatment taking place around them), the

treatment effect on the non-compliers is 0
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Treatment Effect on the Treated

There is a mechanical relationship between the ITT and ToT

ITT = E (Y1i |Ti = 1)− E (Y0i |Ti = 0)

= cE (Y1i |Ti = 1;Ci = 1) + (1− c)E (Y1i |Ti = 1;Ci = 0)−
cE (Y1i |Ti = 0;Ci = 1)− (1− c)E (Y1i |Ti = 0;Ci = 0)

= c [E (Y1i |Ti = 1;Ci = 1)− E (Y0i |Ti = 0;Ci = 1)] +

(1− c) [E (Y1i |Ti = 1;Ci = 0)− E (Y1i |Ti = 0;Ci = 0)]︸ ︷︷ ︸
zero because of no spillovers (i.e., exclusion restriction)

= ToT ∗ c

where c is the compliance rate
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Treatment Effect on the Treated

� Compliance is not typically observed in the control group!

� Estimator for the ToT given above cannot be estimated with standard data

� If we are willing to assume that there is no interference with the control group

then we can back out the ToT as ITT/c

� Standard empirical way of estimating ToT effects is to instrument actual receipt
of treatment with being offered treatment

� Run a regression with compliance as the endogeneous variable

� Being in the treatment group is the instrument

� In a regression without any other control variables, this instrumented ToT will be

exactly the ITT blown up by the inverse of the compliance rate.
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Treatment Effect on the Treated

� Think of the compliance as an endogenous variable with an IV (treatment)

Ci = γ0 + γ1Ti + µi

Yi = β0 + β1Ĉi + ε

� Ĉi = c (i.e, the compliance rate in the treatment group)

� Regressing the outcome on the treated yields the ITT

� Thus, β̂1 = ITT
c = ToT
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Two-sided non-compliance

� Two-sided non-compliance:

� Individuals in the control who get treated

� Individuals in the treatment who do not comply

� In this context it is natural to think of the treatment simply as something that
boosts compliance, and not as the actual receipt of the treatment itself

� Email encouraging people to do something

� Facebook/Twitter/Google ads with information

� We can of course continue to estimate a kind of ITT in this context (difference

between the group offered the “treatment” and the group not offered)

� What we are estimating with the ITT is the impact of the intervention that

changes compliance and not the impact of the treatment itself

� If the compliance rate in the treatment and control groups is the same, we have

no experiment at all!
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Local Average Treatment Effects

� The treatment and compliance possibilities define four possible cells (assuming
that the purpose of the treatment is to increase compliance):

1. Always takers: ci (Ti = 0) = ci (Ti = 1) = 1

2. Never takers: ci (Ti = 0) = ci (Ti = 1) = 0

3. Compliers: ci (Ti = 0) = 0 and ci (Ti = 1) = 1

4. Defiers: ci (Ti = 0) = 1 and ci (Ti = 1) = 0
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Local Average Treatment Effects

� We are not typically interested in the impact of the intervention to boost

compliance, but rather the impact of the treatment itself

� We can instrument compliance with offering the treatment: In some ways this is

simply a standard implementation of the instrumented TOT

� Abadie and Imbens: Cannot use this instrument to understand the effect of the

promotion on “always compliers” nor on of the “defiers”

� In other words, the instrument has no first-stage for groups that were going to

comply or not comply in the absence of the promotion

� What we estimate with this technique is the Local Average Treatment Effect

� This is the impact of the actual treatment (rather than the promotion), estimated

only upon those types who were induced to comply by the promotion
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Local Average Treatment Effects

� The analogy to the estimation of the ToT with one-sided non-compliance would

be to inflate the ITT estimated from a Randomized Promotion design by the

differential compliance between the treatment and control

� But in order to do this we must make an assumption stronger than the

“Non-Interference and Exclusion Restriction” assumptions already laid out

� We must add a Monotonicity assumption known as the “No Defiers” assumption

� The reason we need this assumption is precisely the heterogeneity of impacts

� Under homogeneous impacts and the exclusion restriction, if the fraction of Defiers

and Compliers in the sample were equal, we could not have a treatment effect
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“No Defiers” assumption

� We set the fraction of defiers to zero: πD = 0

� Then

� Fraction of always takers: πAT = E [Ci (Ti = 0)]

� Fraction of never takers: πNT = 1− E [Ci (Ti = 1)]

� Fraction of compliers: πC = E [Ci (Ti = 1)− Ci (Ti = 0)]
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Local Average Treatment Effects

� We can write the ITT as a weighted average of outcomes in the four cells:

ITT = πCE [Yi (Ti = 1;Ci = 1)− Yi (Ti = 0;Ci = 1)] +

πAT E [Yi (Ti = 1;Ci = 1)− Yi (Ti = 0;Ci = 1)]︸ ︷︷ ︸
zero by the exclusion restriction (no spillovers)

+

πNT E [Yi (Ti = 1;Ci = 0)− Yi (Ti = 0;Ci = 0)]︸ ︷︷ ︸
zero by the exclusion restriction (no spillovers)

+

πDE [Y (Ti = 1;Ci = 0)− Yi (Ti = 1;Ci = 0)]︸ ︷︷ ︸
zero by the no defier assumption

= πCE [Yi (Ti = 1;Ci = 1)− Yi (Ti = 0;Ci = 1)]
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Local Average Treatment Effects

� Problem: I can tell the fraction of compliers in the population (by comparing

uptake rates in treatment relative to the control) but I cannot tell which

individuals were induced to comply by the promotion

� This LATE may be interesting (if the promotion is a real policy that is being

considered, or is based off of price variation that we will really observe)

� ...Or may be completely artificial (if the promotion induces a group to comply

that would never comply in the native implementation of the program)
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Local Average Treatment Effects

Imbens: Reporting the local average treatment effect, solely, or in combination

with bounds or point estimates for the overall average based on additional

assumptions, is thus emphatically not motivated by a claim that the local

average treatment effect is the sole or primary effect of interest. Rather, it is

motivated by a sober assessment that estimates for other subpopulations do

not have the same internal validity, and by an attempt to clarify what can be

learned from the data in the absence of identification of the population average

effect
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When are LATEs what we want to measure?

� A price randomization where the implementer is considering a range of different

prices/subsidies and the experiment includes the relevant range (this design still

only gives the marginal impact and not the impact on the whole client pool)

� Eligibility randomization ’on the bubble’ where the question answered is the

impact of extending access on the eligibility margin

� A randomized promotion intervention where a technology is universally available

but not widely adopted, so the relevant policy question is the effect of expanding

uptake through adoption-enhancing interventions
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When are LATEs NOT what we want to measure?

� A price incentive randomization in a context where the product is provided by the

private market and the prices in the study will never be observed in reality

� Randomized promotion campaign where the promotion is so expensive that it

yields a group of beneficiaries who would never take the product in reality

� LATE or IV based on variation that selects an odd sample that is not

representative of the implementation population (e.g., Deaton’s earthquakes

example)

84



Instrumental variables

Basic idea

Two stage least squares

Weak instruments

Practical IV Tips

Example

Heterogeneity and the LATE

Imperfect Compliance

Re-cap

85



Instrumental variables

Basic idea

Two stage least squares

Weak instruments

Practical IV Tips

Example

Heterogeneity and the LATE

Imperfect Compliance

Re-cap

86



Likely source of OLS bias? Exclusion restriction? First stage?

� Vietnam draft lottery

� Job Training Partnership Act (JTPA) randomized trial

� Ocean weather

� Rainfall

� Slope of land
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When is IV used?

Instrumental variables methods are typically used to address the following kinds of

problems

1. Omitted variable bias

2. Measurement error

3. Simultaneity bias

4. Reverse causality

5. Randomized control trials with noncompliance
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Instrumental variables

� Instrumental variables offers some hope at recovering the causal effect of D on Y

� The best instruments come from deep knowledge of institutional details (Angrist

and Krueger 1991)

� Certain types of natural experiments can be the source of such opportunities and

may be useful

89


	Basic idea
	Re-cap

